
Language Seven Four: By Nia Schimnoski aka Niaschim aka The Schim.
Draft 2

foreward
Language Seven Four, L74, Language74; is designed to be used by hand, to make math
easier.
It’s also designed to be easily typed on an array of hardware, and hence it has a ridiculous
amount of redundancy. It can do a deal of text output and real number output.

it’s arbitrarily named, I was gonna call it L77, but then one of its list of properties went up
from 7 to 13, and the digital root of 13 is 4.
Then that stopped meaning anything as I kept adding features to the language, so my math
language’s name is a joke. An in-joke that you know now. It’s arbitrary. All names are, but
this one especially is.

These are the charts of the features as tables.
I’ll also provide examples, clarifications, and a couple equations.

encapsulators

encapsulators go on each side of something to change it’s meaning.

input/output

talking to and getting talked back to by the code.

Primary Primary Alternate Secondary Alternate Tertiary Alternate Description
 “ “ q _ q a variable, anything in these quotes is a variable
() { } en _ en none sequential operation you can nest these and the innermost go first
| | abs abs val val none reframes a variable equation or number as a positive version of the same value.
// \\ // \\ cc _ a single line or multi line comment
@ @ a a none none when at the start of the line it names that line. Else it refers to a line.

 “T” T” “T

print literal none turns everything after this on this line into a message to the console/user, until the next line.
print value none takes an array point or a variable and outputs their value to the console/user.
asknum ask asks for an integer number input.
write none runs once optionally at the end, to write out a list of variables, as their contained values.

Language Seven Four: By Nia Schimnoski aka Niaschim aka The Schim.
Draft 2

digits

100 is one hundred, one zero zero, is a syntax error, so use one times ten times ten, instead.

operators

math! Divide has divided, multiply has multiplied and times, but I guess I had to invent divid,
grammatically. So, there. I did it. It’s done. 5 divid 2 is 2.5, 5 times 2 is 10.

Primary Primary Alternate Secondary Alternate Description
1 one none numeric digit equaling 1
2 two none numeric digit equaling 2
3 three thr numeric digit equaling 3
4 four for numeric digit equaling 4
5 five fiv numeric digit equaling 5
6 six six numeric digit equaling 6
7 seven sev numeric digit equaling 7
8 eight ght numeric digit equaling 8
9 nine nin numeric digit equaling 9
0 zero zer numeric digit equaling 0

none ten none numeric digit equaling 10

Primary Primary Alternate Secondary Alternate Description
 + plus none adds to numbers together
 - minus none

divid /
times * multiplies two numbers

 ^ power none
 log lg oo the log of one number
 sqrt sq rt the square root of one number
round rd ou round a number to nearest whole value

subtracts the 2nd number from the 1st
 ÷ divides the 1st number by the 2nd
 ×

the 1st number to the power of the 2nd

Language Seven Four: By Nia Schimnoski aka Niaschim aka The Schim.
Draft 2

comparators

more than you will ever need, baby! So many- we’ve got redundancies within our redundancies here
(that’s a good thing!) (now you can code with a broken keyboard)

misc.
the fun stuff. let’s you end code pieces, make loops, respond to outcomes. All the good stuff.

(might have to zoom in there) (or copy and paste into another document so you can see them either or)

Primary Primary Alternate Secondary Alternate Description
!= ne none If not equals
i= ie == if equals
>= ge => if equal to or greater
<= le =< if equal to or lesser
i> ig none if great
i< il none if lesser
|= abse none If absolute value equals
|< absl none If absolute value less than
|> absg none if absolute value greater than
|<= absle none if absolute value less than or equals
|>= absge none if absolute value greater than or equals
!> ng none if not greater than
!< nl none if not less than
!>= ngne none if not greater than nor equal
!<= nlne none if not less than nor equal

Primary Primary Alternate Secondary Alternate Tertiary Alternate Description
loop[]until repeat[]until repeat s s until loop s s until loops code in the square bracket until conditions are met.
<arrayName<”ExpansionRate”<”Layers”<”null”>>>> z arrayName z ”ExpansionRate” z ”Layers” z “null” z z none none Creates a coiled array, of the name arrayName.
<arrayName>[“AddressPoint”] z arrayName z s ”AddressPoint” s none none the numeric value of a point in an array (acts like nameless variables)
<arrayName>[“AddressPoint1”]iftouch[“AddressPoint2”] Z arrayName z s “AddressPoint1” s iftouch s “Addressnone none checks if two points in the same array touch.
if then else none none none if this, then do that, else do other that. (must include all three)
goto none none none starts reading a labeled line if such a line exists somewhere in the file
; , . e ends the code line.
 _ : o does nothing, but sometimes look good.

Language Seven Four: By Nia Schimnoski aka Niaschim aka The Schim.
Draft 2

coiled arrays
Do you know what a coiled array is?

It’s a term I made up for a thing I independently discovered (it needed a name).

Think of it as a beaded necklace, and then it gets wrapped up in a coil like a snake.

Each bead is a point. Imagine mixing and matching bead sizes and shapes so that the number of beads
touching eachother per bead in the coil goes up and down. Beads coiled in a circle that number is six,

with beads coiled in a square it’s eight.

Imagine that instead of changing the beads, we changed the amount of space in emptiness and our
beads were perfect spheres, the math is the same.

Coiled arrays are like that. A tightly coiled line of connected spaces.

Another way to picture them is with gameboards. Imagine a spiral of gameboard spaces, so that moving
forwards is the same as traveling the spiral out. Now imagine it so tightly coiled that there is no space
between the spaces, and it looks like a big circle; now, someone very far ahead, can go around and be

right next to someone further behind. (That actually sounds like a fun game)

That’s a coiled array, it’s a space where connections can be checked and adjusted like a brain, but
simpler obvs. isn’t that dope?

Language Seven Four: By Nia Schimnoski aka Niaschim aka The Schim.
Draft 2

important notes
this language is not case sensitive.

Addressing a space in an array that is bigger than the array loops around from the first point until it
stops and then it addresses that point.

Changing the size of an array smaller, erases the data that is now outside of the address range, re-
enlarging the same array, fills the new addresses with the selected null value (instead of restoring the

data).

equations
since you’ll be doing this by hand you need a couple equations (literally 2)

//length from array data

"ExpansionRate" = asknum //or a variable
"Layers" = asknum //or a variable
Set "x" to 0
Set "length" to 0
Loop [set "X" to "X" + 1,
 set "length" to "length" + ("x" × "ExpansionRate")] until "x" >= "Layers",
"length" = (round "length") + 1.
Write "length"
//remember this language is not case sensitive.
//round to the nearest whole number.

//The iftouch equation is:
"ExpansionRate" = asknum //or a variable
“point1” = (round asknum). “point2” = (round asknum). //has to be an integer
"X" = |("point1" ÷ "expansionrate")-("point2" ÷ "expansionrate”)|.
If "X" >= 0
Then if "X" <= 1
Then set "1istrue0isfalse" to 1.
Else goto set "1istrue0isfalse" to 0.
Else goto set "1istrue0isfalse" to 0.
write “1istrue0isfalse" .

//these are little programs to help you utilize the language’s more advanced features.

Language Seven Four: By Nia Schimnoski aka Niaschim aka The Schim.
Draft 2

bonus equation

you may’ve noticed that you can only enter integers, and hence can’t enter pi as a value.

Pi is super important for some calculations; here is how to calculate the value of a point on a circle
without using pi as an input.

“point1” = asknum //or variable
“scale” = asknum //or variable
“translation” = asknum //or variable, translation just means movement.

(((((sqrt “point1”) * sqrt 2) / sqrt(2 * (“point1” + 1))) * “scale”) + “translation”) = ”XorY”

//for a y or x of one for x or y of “point1” respectively
//this is a circle around the origin, this is this equation for a point based on single axis given a unit
circle’s 45 degree arc.

I really want pi tho...

okay fine… here’s how to get an approximate of pi from only integers, up to the tenth or eleventh
decimal place or so…

set “I am ironmans pie” to (((sqrt 2) / sqrt 4)) * (sqrt (18 + (521762640299 / 300000000000))))
//now “I am ironmans pie” is equal to a fairly accurate approximate of pi. You are welcome.

//test it out on a calculator, go ahead, I’ll wait…
//ya see?

//cool hunh?
//now you have your pi, thank you for learning my language

